
Collective
Amnesia

1

Copyright (c) Peter Sommerlad 2024

Collective Amnesia
Peter Sommerlad

peter.cpp@sommerlad.ch
@PeterSommerlad@mastodon.social ()

Slides:

https://github.com/PeterSommerlad/talks_public/MeetingCPP/2024/

3

Copyright (c) Peter Sommerlad 2024

Me
Teaching programming since 1987
Professor for software engineering for 15 years
C++ user before the fall of the Berlin wall
30+ years of teaching C++ and attending (C++) conferences
ISO SC22 WG21 for about 15 years
Contributor to MISRA-C++:2023, AUTOSAR-C++ and WG23 C++ safety
guidelines
Inspirer of C++ refactoring tooling (Eclipse-CDT/Cevelop)
Book co-author of POSA1, Security Patterns and contributor to others
Available for reviews, coaching, training (self-employed)

4

Copyright (c) Peter Sommerlad 2024

almost 60.
Leukemia survivor (2000)
Lucky to have met many interesting persons in our profession
Love to learn and teach
Also actual experience in doing
C++ libraries on github.com/PeterSommerlad

Speaker notes

Copyright (c) Peter Sommerlad 2024

5

Copyright (c) Peter Sommerlad 2024

Image taken from http://4.bp.blogspot.com/-LVeN-
mVOmcw/Ubt_vtsYTXI/AAAAAAAAK2E/Ujx_uF1GK0A/s1600/1000px-TMS-Statler&Waldorf-BalconyBox.jpg

Speaker notes

Copyright (c) Peter Sommerlad 2024

Amnesia
Noun
amnesia (countable and uncountable, plural amnesias or
amnesiæ)

(pathology) Loss of memory; forgetfulness.
(figurative) Forgetfulness.

a state of cultural amnesia
(UK, slang) A potent sativa-dominant strain of
marijuana. Synonyms: amm, ammie;

7

Copyright (c) Peter Sommerlad 2024

source:

Amnesia is a deficit in memory caused by brain damage or brain diseases, but it can also be temporarily caused by
the use of various sedative and hypnotic drugs. The memory can be either wholly or partially lost due to the extent of
damage that is caused.

Speaker notes

https://en.wiktionary.org/wiki/amnesia

Copyright (c) Peter Sommerlad 2024

Related: Nostalgia
Nostalgia is a sentimentality for the past, typically for a

period or place with happy personal associations.

10 PRINT "HELLO WORLD!"
20 GOTO 10
RUN
HELLO WORLD!
HELLO WORLD!
HELLO WORLD!
HELLO WORLD!
HELLO WORLD!

8

Copyright (c) Peter Sommerlad 2024

Speaker notes

https://en.wikipedia.org/wiki/Nostalgia

Copyright (c) Peter Sommerlad 2024

What is this all about?
Well known knowledge is not applied
Proven practices are not well-known
Scientific evidence is ignored
Timeless principles get forgotten
Complicated stuff favored over simplicity

9

Copyright (c) Peter Sommerlad 2024

I also want to remind you of some things I think are important and often get not appreciated or taught well.

Speaker notes

Copyright (c) Peter Sommerlad 2024

What have we forgotten?
Remember!

11

Copyright (c) Peter Sommerlad 2024

Forgotten is relative. Some examples are also about neglection or ignorance in various dimensions, i.e., neglection in
education, deliberately ignoring facts

Speaker notes

Copyright (c) Peter Sommerlad 2024

Modules

D.L. Parnas 1972

Independent development
Changeability
Comprehensibility
Hide design decisions
Separation of concerns
Assemble code from
various modules

12

Copyright (c) Peter Sommerlad 2024

Parnas:

In general this is the start of software archticture and abstraction (ADT)

Speaker notes

https://dl.acm.org/doi/pdf/10.1145/361598.361623

Copyright (c) Peter Sommerlad 2024

Type Systems

A. Church 1940

Formulas

13

Copyright (c) Peter Sommerlad 2024

Church’s article accessed via
Nov 2024

One reason type systems while important are often addressed either in an ad hoc manner, or in theory only using many
greek and strange symbols. Active exploitation of type systems for system design is often badly understood. Primitive
Obsession in practical code dominates.

Speaker notes

https://pdfs.semanticscholar.org/28bf/123690205ae5bbd9f8c84b1330025e8476e4.pdf

Copyright (c) Peter Sommerlad 2024

CO2 causes global warming

Svante
Arrhenius

On the Influence of Carbonic Acid in the
Air upon the Temperature of the Ground

14

Copyright (c) Peter Sommerlad 2024

https://commons.wikimedia.org/wiki/File:Der_Aufstand_der_Letzten_Generation_blockiert_Stra%C3%9Fe_am_Hauptbahnhof_(51848563018)_(cropped).jpg

Speaker notes

https://www.rsc.org/images/Arrhenius1896_tcm18-173546.pdf

Copyright (c) Peter Sommerlad 2024

Unit Testing/Test Automation
as early as the 1950s and 1960s
Kent Beck SUnit published about in 1989
Erich Gamma and Kent Beck JUnit in 1997
me using and teaching C++ unit testings since

15

Copyright (c) Peter Sommerlad 2024

While not the only useful automated tests, unit testing and TDD are key to great internal quality.

They provide immedieate feedback and make a developer a victim of their design decisions.

Speaker notes

https://en.wikipedia.org/wiki/Unit_testing

Copyright (c) Peter Sommerlad 2024

Refactoring

William C. Opdyke and Ralph Johnson 1990
Bill Griswold PhD thesis 1991
William C. Opdyke PhD thesis 1992 (C++ Refactoring)
Martin Fowler book 1999/2018 (Java/Javascript)

Improving the design of existing code

Unfortunately, C++ refactoring tooling is much harder than
for other languages

16

Copyright (c) Peter Sommerlad 2024

We built C++ refactoring tooling at my institute between 2006 and 2019 resulting in Cevelop
(). When we started, everybody told me, it would be impossible. We showed it is possible
(with some engineering tradeoffs), but requires much more work than for other younger languages. Unfortunately,
keeping up with the language evolution and lack of funding and after leaving the universitz I could no longer maintain
it. May be someone is willing to pick up, but it will be a lot of work, as it was from when we started.

Speaker notes

https://www.cevelop.com/

Copyright (c) Peter Sommerlad 2024

Danger Fascism - Concentration Camps

Auschwitz Gate
17

Copyright (c) Peter Sommerlad 2024

Human essential rights are essential.

Love is human, hate isn’t.

When populism tries to put the blame on refugees, poor people, “others” stay aware that they are fostering taking those
essential rights away.

Auschwitz Image contributed by Muu-karhu under CC license:

Today the EU (and other countries) built refugee camps and pretend to be able to stop/hinder migration by making
arrival of refugees an ongoing nightmare.

Why are people so inhuman to other people in need?

Populism and Fascism are on the rise, I am so afraid.

Speaker notes

https://creativecommons.org/licenses/by/2.5/deed.en

Copyright (c) Peter Sommerlad 2024

Software Architecture and Patterns
World view reduced to 23 GoF Design Patterns
Software Patterns started at least 35 years ago
Architecture taught wrt Cloud/Distribution and
complexity
Internal software quality neglected

18

Copyright (c) Peter Sommerlad 2024

Except for some “inner circle” of pattern enthusiasts, patterns are often taught just from the Gang-of-Four book, which
are using very old style C++ in example code and address solutions using object-oriented design. While many
pattern’s underlying principles go beyond OO design, this is often overlooked.

Fortunately, some people are taking up patterns for C++ again, such as Klaus Iglberger.

In general: good enough software isn’t, because (internal) software quality is so unintuitive.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Good Software Principles
Simplicity
Separation of concerns
High cohesion
Loose coupling
Exchangeability
Testability

19

Copyright (c) Peter Sommerlad 2024

This list goes on and on. It is always surprising when seeing a piece of real-world code, how often how many of those
princples are violated

Speaker notes

Copyright (c) Peter Sommerlad 2024

Why have we forgotten?

Who is guilty of our amnesia?

Reasons?
21

Copyright (c) Peter Sommerlad 2024

This is where I speculate, so take everyting with a grain of salt and consider my personal bias.

This is ranting.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Hardware Advances?

:

Vendors hype slow software to sell more hardware

Phones today are about 100’000 times more powerful
than a CRAY-1

, AI, VR, Cloud, Blockchain, EJB, XML, Java, CORBA

22

Copyright (c) Peter Sommerlad 2024

During my career I observed several times the situation where a technology was hyped that I had a bad gut feeling
about. It either seemed not really something new, or not really solving any problem, while in contrast required
expensive or a lot of (server) hardware.

We could do a lot in the past with much less hardware.

While niche uses, each where appropriate, general application of a “modern technology” often weren’t.

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Nerd/Learning culture
Best people learn new stuff first
Thought leaders lose interest
Before needful majority gets it
Suffer long learning curve
Repeat all mistakes, again

23

Copyright (c) Peter Sommerlad 2024

Fokus on techniques over underlying values
Majority repeats long learning curve, even so experts already know much better

Speaker notes

Copyright (c) Peter Sommerlad 2024

Books, Media?

It’s called News for a reason

old wine in new skins

24

Copyright (c) Peter Sommerlad 2024

Media outlets and conferences sell more issues and tickets when they seem to report about the newest “best stuff
invented since sliced bread”.

Sometimes this is just rebranding existing stuff (old wine in new skins).

Similarly, big corporations selling ads hype the use of browsers and social media.

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Powerful Men
 drunk by power and money

 want to control the
 hoard money

 lack of social responsibility

Too few benefit at the cost of most.

25

Copyright (c) Peter Sommerlad 2024

Too low taxes lead to enourmous wealth that is beyond anybody’s needs.

I have no idea how to fight the politics and economy behind that, since it is a long term game played in many countries
and people don’t recognize it.

Network economy fosters such centralization, whereas decentral systems would be much more resilient. I think that is
why some fight decentralized renewables so much.

The political and economical system is fostering this since the 1980s (Reagonomics and Thatcherism, Neoliberalism,
Market Belief)

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Teaching Lethargy
Education is

hard
often badly paid
expensive to prepare

Stable curricula teach obsolete techniques
“Market Demand”
Fundamentals badly understood
Experience takes time and practice

26

Copyright (c) Peter Sommerlad 2024

Teaching while rewarding is also extremely draining, both for the teacher as well as for the learners
Preparing good teaching material for others to learn from is very expensive. It consists of acquiring the knowledge
and experience and then preparing the material and tuning it from experience in using it.
Trend to reuse existing stuff even if unsuitable
Trend to stop learning on the teacher side
“Market Demand” asks for current applicable knowledge, which is no longer current when students graduate.

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Following Trends

Fighting upstream requires effort
“Nobody gets fired for buying IBM/Cisco”
Risk aversion
Ignorance of consequences

If everybody is doing it, we also should

27

Copyright (c) Peter Sommerlad 2024

Trends are followed without considering the consequences and cost.

Opposing a trend requires effort and courage, and the ability to judge its consequences.

Original thought is suppressed as “opposition”, even if better solutions would be available.

citation IBM:

Speaker notes

https://www.forbes.com/sites/duenablomstrom1/2018/11/30/nobody-gets-fired-for-buying-ibm-but-they-
should/

Copyright (c) Peter Sommerlad 2024

Populism

loud, simplistic but wrong

vs
calm, realistic and actionable

28

Copyright (c) Peter Sommerlad 2024

Generational amnesia forgets that populism lead to fascism.

Pointing to “others” as being guilty for own perceived suffering (which often isn’t really compared to “others”)

Witch hunting instead of problem solving.

For getting to power, parties promise simple solutions to complex problems that are no actual solutions.

Hard to win against populism if you focus on real solutions instead of putting blame.

People too easily lulled by (social) media into believing populist statements.

Living in a bubble

Speaker notes

Copyright (c) Peter Sommerlad 2024

 stop

29

Copyright (c) Peter Sommerlad 2024

Enough ranting…

Image taken from http://4.bp.blogspot.com/-LVeN-
mVOmcw/Ubt_vtsYTXI/AAAAAAAAK2E/Ujx_uF1GK0A/s1600/1000px-TMS-Statler&Waldorf-BalconyBox.jpg

Speaker notes

Copyright (c) Peter Sommerlad 2024

What can I help with?
Reminder

31

Copyright (c) Peter Sommerlad 2024

for your own notes

Speaker notes

Copyright (c) Peter Sommerlad 2024

Missing Ingredients
Architecture Abyss
Abstraction Agony
Automation of Tests
Abracadabra Simplifications

32

Copyright (c) Peter Sommerlad 2024

A- Alliterations are there for fun, not because they fit perfect.

Speaker notes

Copyright (c) Peter Sommerlad 2024

My philosophy

Less Code
=

More Software
33

Copyright (c) Peter Sommerlad 2024

I borrowed this philosophy from Kevlin Henney.

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Architecture Abyss

Dependencies, worst:
Singletons
global variables
(hidden) side effects

Duplication (not DRY/OAOO code)
Developer lazyness or ignorance
Shyness to refactor

Consciously manage dependencies!

35

Copyright (c) Peter Sommerlad 2024

Too many and needless dependencies are the major roadblock to testing and software change

Take the courage to clean up your system, especially when you can then write better and simpler tests.

Don’t let your system’s dependencies pull you down into an abyss.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Software Architecture

Views:
physical: mapping to hardware
logical: e.g. layering
process: concurrency and synchronisation
development: organization, e.g., file structure:
#include, libs, object files, build

A software architecture is a description of the
subsystems and components of a software system and
the relationships between them.

36

Copyright (c) Peter Sommerlad 2024

This definition and some of the following ones is taken from “Pattern-oriented Software Architecture: A System of
Patterns” [POSA1] co-authored by me.

The dependencies created by what a component contains and whot other components it depends upon or what other
components depend on it have a great influence on testability of code.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Relationship

be aware of hidden relationships
make relationships obvious through parameterization
minimize and loosen coupling

A relationship denotes a connection between components. A relationship may be static or
dynamic. Static relationships show directly in source code. They deal with the placement of
components within an architecture. Dynamic relationships deal with temporal connections and
dynamic interaction between components. They may not be easily visible from the static
structure of source code.

37

Copyright (c) Peter Sommerlad 2024

Relationships between components are needed for a system to function. However, when not consciously managed
they can lead to tangled systems that are hard to test.

Often, managing dependencies comes as an afterthought, or tight coupling is a given due to used
infrastructure/frameworks.

Both, overengineering as well as “underengineering” can lead to dependencies that either make the software rigid or
hard to test.

Too much “dependency injection” can lead to manifesting dependencies without need.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Patterns

Beware of the Consequences, especially Liabilities

A pattern (for software architecture) describes a particular recurring design
problem that arises in specific design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified by describing its
constituent components, their responsibilities and relationships, and the ways in
which they collaborate.

38

Copyright (c) Peter Sommerlad 2024

Often Patterns are taken as just blueprints to follow without considering why and also without considering the potential
drawbacks and liabilities.

This can lead to overengineered solutions adding complexity without need.

It is very hard to get rid of such complexity afterwards.

Neverthless, let us look at one important pattern: Layers.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Layers

Levels of abstraction
Dependencies in one direction
Exchangeability of layers
Liability example:

Difficulty of establishing the correct granularity of layers

The Layers architectural pattern helps to structure applications that can be
decomposed into groups of subtasks in which each group of subtasks is at a
particular level of abstraction.

39

Copyright (c) Peter Sommerlad 2024

An important point is raising the level of abstraction. Just reimplementing the same level of abstraction by delegating to
lower layers just adds overhead without gaining much.

There always will be fundamental types/functions that are useful in all layers. However, to manage dependencies, it is
best to just rely on the next layer below to achieve exchangability and testability. Fakes for testing a layer can be for
one layer below, or sometimes for the layer above.

Control flow is not necessarily from higher to lower layer, in an event-based system, control flow often goes from lower
layers to higher layers (callbacks).

Speaker notes

Copyright (c) Peter Sommerlad 2024

Layers

40

Copyright (c) Peter Sommerlad 2024

Note that inter-layer dependencies should always be directed towards the lower layer to avoid circular dependencies.

Often there are components useful in all layers. Those should be considered platform library that all layers can depend
on. There is no need to have a layer-specific string class for example.

On the other hand, system services should only be used by the lowest layer and provided in a more abstract and
convenient way to a higher layer.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Tiers != Layers
only technology abstraction
changes require adaptation
across tiers
exchanging some technology
(database, UI) possible

41

Copyright (c) Peter Sommerlad 2024

A tiered architecture does not correspond to a layered architecture, because changes in the application usually cause
change across all tiers.

In a Layered architecture higher layers have a higher level of abstraction (say more with less) and layers may be
changed internally or exchanged without affecting other layers, because their different level of abstraction.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Beware of Architects

When you are (confronted with) an Architect and are
asked to deploy his “solution” always ask:

Why? Where is your code?
(*) James O. Coplien, Neil B. Harrison: Organizational Patterns of Agile Software Development

Architect also Implements (*)

42

Copyright (c) Peter Sommerlad 2024

Strive for Simplicity!

Think of consequences.

Don’t force a trend to your programmers as an architect, demonstrate that solution actually works.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Abstraction

44

Copyright (c) Peter Sommerlad 2024

This section gives an overview on the abstraction mechanisms available in C++ without going into details.

It is provided to form a supportive mental model.

If time is brief, we just might skip it.

And later watch Kate Gregory’s ACCU 2022 talk on abstraction that is much more elaborate:

Speaker notes

https://www.youtube.com/watch?v=Y3wxJD3BpqI

Copyright (c) Peter Sommerlad 2024

What is Abstraction?
give a Name for “stuff”

recall/use via Name
hide details behind Name

encapsulation enables change

45

Copyright (c) Peter Sommerlad 2024

Abstraction is a key concept to programming, even when it is often neglected in teaching programming.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Using Abstraction?
recall via name allows layering

details below details
abstraction on top of abstraction

allows to parametrize “stuff”
recall passes arguments
parameters are substituted with argument values
more generic solution, better reuse

46

Copyright (c) Peter Sommerlad 2024

Once we have “abstracted” a thing by giving its definition a name, we can recall that “thing” without having to repeat
its definition.

Abstraction is further the key to allow parameters for “things”: placeholders that can be filled in later with arguments.

This is the key mechanism to achieve “more software with less code”.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Abstraction in C++
what

value, expression
computation (sequence)
operation
set of functions
value set + behavior
set of types
related stuff

how
(const) variable
function
overloading
function template
(class) type
class template
namespace

47

Copyright (c) Peter Sommerlad 2024

this table is just a rough comparison of the C++ features.

Namespaces (such as std::) are not really a means of abstraction, but of grouping.

C++20 in addition allows to abstract otherwise implicit requirements on template arguments with concepts.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Parameterization {} () <>

initialization: var{value}
functions: f(params)
templates: T<tparams>

Abstractions can have parameters

arguments: compile time {}()<>, run time (){}

48

Copyright (c) Peter Sommerlad 2024

This is a very rough overview.

Speaker notes

Copyright (c) Peter Sommerlad 2024

C++ Parameterization
We can parameterize several things:

functions with function
parameters
lambdas with captures
template with template
parameters

class templates
function templates
variable templates

template parameters:
class templates
types
compile-time values
global references

argument deduction
function templates
class templates

49

Copyright (c) Peter Sommerlad 2024

Parameterization is what makes code composable, testable, and reusable.

Relying on global state syntactically, e.g., writing to std::cout, makes code untestable and hard to reuse.

Remove unnecessary dependencies to objects/values/types by introducing parameters for them.

Speaker notes

Copyright (c) Peter Sommerlad 2024

C++ strengths
C++ has powerful abstraction mechanisms
compile-time type safety
generates efficient code (no virtual machine)
cares much about backward compatibility

the last point is responsible for some of C++ weaknesses

50

Copyright (c) Peter Sommerlad 2024

Lets look into type system next.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Stop Worrying and Love
the C++ Type System

“I observed that type errors almost invariably reflected
either a silly programming error or a conceptual flaw in the

design.”
– Bjarne Stroustrup, The Design and Evolution of C++

52

Copyright (c) Peter Sommerlad 2024

for your own notes

Speaker notes

Copyright (c) Peter Sommerlad 2024

Type = ({values}, {operations})
A Type denotes

a set of possible values and
a set of possible operations on these values

operations define the meaning of the values
also define possible conversions (implicit or explicit)

"Types provide meaning to programs"

53

Copyright (c) Peter Sommerlad 2024

Cardinality(=size) of the first set denotes the least number of bits required for representing all values

languages and hardware might impose additional overhead (e.g. alignment, run-time type information)

Operations include operators, functions, in general all possible uses of the values

Type Theory often taught far away from use of types in programming

Type Theory associates a term (expression) with a type

This is often only taught implicitly from using a programming language

it took me decades to actually learn about it well enough and I am still learning...

Speaker notes

Copyright (c) Peter Sommerlad 2024

Type System
provides meanings to programs

prevents mis-interpretation of data bits
associates types with expressions and entities

statements do not have a type
raises type errors

if meaningless operations are attempted

54

Copyright (c) Peter Sommerlad 2024

An entity can be a function, an object, a variable, or a reference.

statements do not have a type.

the only thing you can do with statements is sequencing (;)

Types are a compile-time only thing, so adding (strong) types don’t cost you any performance, but can prevent writing
meaningless code.

Speaker notes

Copyright (c) Peter Sommerlad 2024

C++ Type System
detects type errors (mostly strong)

supports implicit and explicit conversion
deduces types -> magic & less code
auto and templates

selects overloads
functions and operators

instantiates and selects templates
SFINAE/concepts

is static, except when dynamic
virtual, dynamic_cast

55

Copyright (c) Peter Sommerlad 2024

C++ has a mostly strong, mostly static type system, except for the weak parts inherited from C, which got them from B.

Only when using the keyword virtual C++ supports dynamic typing (and with std::variant).

C++ template mechanism and type system can perform magic at compile time.

Reflection will add a new dimension to the type system of C++26(?)

Speaker notes

Copyright (c) Peter Sommerlad 2024

C++ Type System Weaknesses
integral promotion, including bool as integer
usual arithmetic conversion
implicit conversion of built-in types
array to pointer decay
implementation-defined types int
undefined behavior on “normal” arithmetic
casts (less arbitrary than in C)
type punning (mostly illegal)
C-string convention

static analysis, compiler warnings, follow guidelines!

56

Copyright (c) Peter Sommerlad 2024

Many of the C++ type system weaknesses can be programmed/designed around, but that requires diligence and
some effort.

Speaker notes

Copyright (c) Peter Sommerlad 2024

C++ Type System Strengths

User-defined types & templates are first class citizens
Type safety
Type deduction (auto, template arguments)
Compile-time polymorphism

Overload resolution
Templates and auto

Computation with types at compile time
Run-time efficiency

classes make a strong type system
(Bjarne Stroustrup, D&E)

For integer-like types enum class can be strong types P.S.

57

Copyright (c) Peter Sommerlad 2024

Compile-time computation allows for meta-programming and types representing values.

Compilers employ the type system for optimization, cheating can either limit optimization or optimization can break
code that attempts to “cheat” and thus has undefined behavior.

You can find integer replacement types that avoid the implicit conversion and undefined behavior traps of the built-in
integral types on my github:

For a stront typing library with mix-in operations so that you can reduce the chance of meaningless operations take a
look at:

Speaker notes

https://github.com/PeterSommerlad/PSsimplesafeint
https://github.com/PeterSommerlad/PSsODIN
https://github.com/PeterSommerlad/PSsSATIN

https://github.com/PeterSommerlad/PSsst

Copyright (c) Peter Sommerlad 2024

 Testing Automation
Interactive Debugging is the greatest time waster
I haven’t used an interactive C++ debugger for decades
TDD gives immediate feedback to design decisions

59

Copyright (c) Peter Sommerlad 2024

for your own notes

Speaker notes

Copyright (c) Peter Sommerlad 2024

Most Important!

Have GUTs
I hope that you write decent good unit tests!

60

Copyright (c) Peter Sommerlad 2024

GUTs = Good Unit Tests

not the topic of this talk, but a pre-requisite for safe and secure code.

See for example Kevlin Henney at MeetingC++2021:

 on Freepik

In the context of MeetingC++ you can learn more about GUTs from my friend Kevlin Henney, or otherwise from me :-)

Speaker notes

https://youtu.be/cfh6ZrA19r4

Picture by brgfx

Copyright (c) Peter Sommerlad 2024

TDD Circle
TDD circle of life

RED

write a failing test

GREEN

change implementation
until it passes all tests

REFACTOR

simplify the design
while tests stay green

RED -> GREEN -> Refactor -> …

all in very tiny steps

61

Copyright (c) Peter Sommerlad 2024

TDD writes production code only to make a failing test pass.

If you already think you use tiny steps, use smaller steps.

However, use “Obvious Implementation” when the problem to be solved is clear.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Three Rules of TDD
1. Only write production code to pass a failing test.
2. Write no more of a unit tests than sufficient to fail.

compilation failures are failures.
3. Write no more production code than necessary to pass

the one failing unit test.

62

Copyright (c) Peter Sommerlad 2024

These rules were spelled by Robert C. Martin (Uncle Bob) and are taken from [MCPWTDD].

corollaries:

1. write tests first
2. proceed incrementally in steps as small as possible
3. do not run ahead with implementing production code without appropriate tests (would violate rule 1)

Speaker notes

Copyright (c) Peter Sommerlad 2024

 Refactoring

Rename
Extract Function
Extract Class
Introduce Parameter
Move Member
Replace loop with algorithm call

most important refactorings:

Refactor Mercilessly !
63

Copyright (c) Peter Sommerlad 2024

There are more, but be at least aware of those

Speaker notes

Copyright (c) Peter Sommerlad 2024

Abracadabra Simplification

65

Copyright (c) Peter Sommerlad 2024

for your own notes

Speaker notes

Copyright (c) Peter Sommerlad 2024

My philosophy

Less Code
=

More Software
66

Copyright (c) Peter Sommerlad 2024

I borrowed this philosophy from Kevlin Henney.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Being Overwhelmed?
Ward Cunningham:

Do the simplest thing that
could possibly work!

when you don’t know what to
do.

67

Copyright (c) Peter Sommerlad 2024

This is the magic ingredient: Strive for Simplicity

Image source:

Carrigg Photography for the Wikimedia Foundation, CC BY-SA 3.0 , via
Wikimedia Commons

Speaker notes

https://commons.wikimedia.org/wiki/File:Ward_Cunningham_-_Commons-1.jpg

https://creativecommons.org/licenses/by-sa/3.0

Copyright (c) Peter Sommerlad 2024

Example: ISR with object attachement

What for?

What have you today?

Mmhh, may be I have an idea.

We need std::function but without dynamic storage.

ISR table has void(*)() and we want support member
functions and free functions

shows 1000+ lines of scaffolding including macros for
registration of ISR with object parameter

68

Copyright (c) Peter Sommerlad 2024

The context is a bare metal freestanding implementation without any underlying OS.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Example: Interrupt Service template
struct handler{
 void operator()(){
 ++washere;
 }
 int washere{};
};
static handler theHandler{};
void aHandlerFunc(){}

template<auto&ih>
void InterruptService() {
 ih();
}
using ihp=void(*)(); // ISR table entry
static ihp ISRtable[]={ // simulated
 nullptr,
 &InterruptService<theHandler>,
 &InterruptService<aHandlerFunc>
};

69

Copyright (c) Peter Sommerlad 2024

With C++20 concepts one can even overload the function template InterruptService() to allow for other member
functions than an overloaded operator()

Speaker notes

https://godbolt.org/z/MbTqvarvb

Copyright (c) Peter Sommerlad 2024

Remember!
 Be human and love
 Refrain from hate
 Restrain climate crisis
 Resist populism and fascism
 Simplify your architecture
 Rely on test automation
 Refactor your code
 Act responsibly

70

Copyright (c) Peter Sommerlad 2024

Not all “Re”s, but enough to keep my list.

Speaker notes

Copyright (c) Peter Sommerlad 2024

Relieved, More?
AMA: Ask me anything?

71

Copyright (c) Peter Sommerlad 2024

You can do that even in the future!

Speaker notes

Copyright (c) Peter Sommerlad 2024

Done…
Feel free to contact me @PeterSommerlad@mastodon.social

() or peter.cpp@sommerlad.ch in case of further
questions and comments

72

Copyright (c) Peter Sommerlad 2024

